Single-molecule fluorescence spectroscopy in (bio)catalysis.

نویسندگان

  • Maarten B J Roeffaers
  • Gert De Cremer
  • Hiroshi Uji-i
  • Benîot Muls
  • Bert F Sels
  • Pierre A Jacobs
  • Frans C De Schryver
  • Dirk E De Vos
  • Johan Hofkens
چکیده

The ever-improving time and space resolution and molecular detection sensitivity of fluorescence microscopy offer unique opportunities to deepen our insights into the function of chemical and biological catalysts. Because single-molecule microscopy allows for counting the turnover events one by one, one can map the distribution of the catalytic activities of different sites in solid heterogeneous catalysts, or one can study time-dependent activity fluctuations of individual sites in enzymes or chemical catalysts. By experimentally monitoring individuals rather than populations, the origin of complex behavior, e.g., in kinetics or in deactivation processes, can be successfully elucidated. Recent progress of temporal and spatial resolution in single-molecule fluorescence microscopy is discussed in light of its impact on catalytic assays. Key concepts are illustrated regarding the use of fluorescent reporters in catalytic reactions. Future challenges comprising the integration of other techniques, such as diffraction, scanning probe, or vibrational methods in single-molecule fluorescence spectroscopy are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism.

Fluorescence resonance energy transfer and fluorescence polarization anisotropy are used to investigate single molecules of the enzyme staphylococcal nuclease. Intramolecular fluorescence resonance energy transfer and fluorescence polarization anisotropy measurements of fluorescently labeled staphylococcal nuclease molecules reveal distinct patterns of fluctuations that may be attributed to pro...

متن کامل

Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics.

Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctu...

متن کامل

Approaches to single-nanoparticle catalysis.

Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, pre...

متن کامل

Real-time enzyme dynamics illustrated with fluorescence spectroscopy of p-hydroxybenzoate hydroxylase.

We have used the flavoenzyme p-hydroxybenzoate hydroxylase (PHBH) to illustrate that a strongly fluorescent donor label can communicate with the flavin via single-pair Förster resonance energy transfer (spFRET). The accessible Cys-116 of PHBH was labeled with two different fluorescent maleimides with full preservation of enzymatic activity. One of these labels shows overlap between its fluoresc...

متن کامل

Single-molecule fluorescence spectroscopy: new probes of protein function and dynamics.

Single-molecule fluorescence methods provide new tools for the study of biological systems. Single-pair fluorescence resonance energy transfer has provided detailed information about dynamics and structure of the Ca2+-signaling protein calmodulin. Single-molecule polarization modulation spectroscopy has probed the mechanism by which calmodulin activates the plasma membrane Ca2+ pump.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 31  شماره 

صفحات  -

تاریخ انتشار 2007